翻訳と辞書
Words near each other
・ Bregenz Forest Mountains
・ Bregenz Forest Railway
・ Bregenzer Ach
・ Bregenzer Festspiele
・ Breggia (river)
・ Breggia, Switzerland
・ Bregille (Besançon)
・ Breginie
・ Breginj
・ Bregje Heinen
・ Bregma
・ Bregmacerinia
・ Bregman
・ Bregman divergence
・ Bregman method
Bregman-Minc inequality
・ Bregmatomyrma
・ Bregnano
・ Bregnør Fiskerleje
・ Bregovi
・ Bregovina
・ Bregovo
・ Bregovo (village)
・ Bregovo Municipality
・ Bregowine
・ Bregtdorp
・ Bregu i Diellit
・ Bregu Mosque
・ Breguet
・ Breguet (brand)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bregman-Minc inequality : ウィキペディア英語版
Bregman-Minc inequality
The Bregman-Minc inequality or Bregman's theorem is a theorem in discrete mathematics, which allows to estimate the permanent of a binary matrix via its row or column sums. The inequality was conjectured in 1963 by Henryk Minc and first proved in 1973 by Lev M. Bregman.〔〔 Further entropy-based proofs have been given by Alexander Schrijver and Jaikumar Radhakrishnan.〔〔 The Bregman-Minc inequality is used, for example, in graph theory to obtain upper bounds for the number of perfect matchings in a bipartite graph.
== Statement ==

The permanent of a square binary matrix A = (a_) of size n with row sums r_i = a_ + \ldots + a_ for i=1, \ldots , n can be estimated by
:\operatornameA \leq \prod_^n (r_i!)^.
The permanent is therefore bounded by the product of the geometric means of the numbers from 1 to r_i for i=1, \ldots , n. Equality holds if the matrix is a block diagonal matrix consisting of matrices of ones or results from row and/or column permutations of such a block diagonal matrix. Since the permanent is invariant under transposition, the inequality also holds for the column sums of the matrix accordingly.〔〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bregman-Minc inequality」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.